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Abstract—Graph Learning has emerged as a promising tech-
nique for multi-view clustering, and has recently attracted lots
of attention due to its capability of adaptively learning a unified
and probably better graph from multiple views. However, the
existing multi-view graph learning methods mostly focus on
the multi-view consistency, but neglect the potential multi-view
inconsistency (which may be incurred by noise, corruptions, or
view-specific characteristics). To address this, this paper presents
a new graph learning-based multi-view clustering approach,
which for the first time, to our knowledge, simultaneously
and explicitly formulates the multi-view consistency and the
multi-view inconsistency in a unified optimization model. To
solve this model, a new alternating optimization scheme is
designed, where the consistent and inconsistent parts of each
single-view graph as well as the unified graph that fuses the
consistent parts of all views can be iteratively learned. It
is noteworthy that our multi-view graph learning model is
applicable to both similarity graphs and dissimilarity graphs,
leading to two graph fusion-based variants, namely, distance
(dissimilarity) graph fusion and similarity graph fusion. Experi-
ments on various multi-view datasets demonstrate the superiority
of our approach. The MATLAB source code is available at
https://github.com/youweiliang/ConsistentGraphLearning.

Index Terms—Multi-view graph learning; Multi-view cluster-
ing; Graph fusion; Consistency; Inconsistency.

I. INTRODUCTION

Multi-view data consist of features collected from multiple
heterogeneous sources (or views). The multiple views of
features can provide rich and complementary information for
discovering the underlying cluster structure of data. It has been
a popular research topic in recent years as to how to effectively
and jointly exploit the features from multiple views and thus
achieve robust clusterings for multi-view data.

In the literature, numerous (single-view) clustering methods
have been developed [1], among which the graph-based meth-
ods are one of the most widely-studied categories [2], [3]. The
graph-based methods typically construct a similarity graph,
and then partition this graph to obtain the clustering result. In
these methods, the construction of the graph is independent of
the clustering process, and the clustering performance heavily
relies on the predefined graph. To alleviate this limitation,
some (single-view) graph learning methods have be presented
[4], [5], where the graph structure can be adaptively learned in
the clustering process. More recently, inspired by the single-
view graph learning [4], [5], the multi-view graph learning has
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rapidly emerged as a powerful technique for enhancing the
multi-view clustering performance [6]–[9]. Remarkably, Zhan
et al. [6]–[8] developed several multi-view graph learning
approaches, which are able to fuse multiple graphs into a
consistent graph with a certain number of connected compo-
nents. Nie et al. [9] proposed a self-weighted scheme for fusing
multiple graphs with the importance of each view considered.
Despite the significant progress, a common limitation to these
multi-view graph learning methods [6]–[9] lies in that they
mostly focus on the consistency of multiple views, but lack the
ability to explicitly consider both multi-view consistency and
inconsistency (which may be brought in by noise, corruptions,
or view-specific characteristics) in their frameworks, which
can degrade their performances when faced with potentially
noisy or low-quality data.

In the single-view scenario, to deal with the potential noise
or corruptions, Bojchevski et al. [10] proposed a new graph-
based clustering method based on the latent decomposition of
the similarity graph into two graphs, namely, the good graph
and the corrupted graph. Though it is able to learn a good
graph by eliminating the influence of the potential noise, this
graph learning method [10] is only applicable to a single graph
(for a single view) and cannot be utilized in the multi-view
graph learning task where multiple graphs from multiple views
are involved. Thereby, it is still a very challenging problem
how to jointly model the multi-view consistency (which can
be viewed as the multi-view good graphs) as well as the multi-
view inconsistency (which can be viewed as the multi-view
corrupted graphs) in a unified multi-view graph learning model
for improving the multi-view clustering performance.

To tackle this problem, this paper proposes a novel multi-
view graph learning approach for multi-view clustering. We
argue that the simultaneous modeling of multi-view consis-
tency and multi-view inconsistency can significantly benefit
the multi-view graph learning process. In particular, with the
graph structures of multiple views given, their consistency
and inconsistency are simultaneously leveraged to learn a
unified graph. It is intuitive to assume that the graph of each
view can be decomposed into two parts, i.e., the consistent
part and the inconsistent part, and the goal is to learn and
remove the inconsistent parts while preserving the consistent
parts. Specifically, we formulate the multi-view consistency
and multi-view inconsistency as well as the graph fusion
term into a new objective function. By iteratively optimizing
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Fig. 1. Visualization of the similarity matrices on the UCI Digits dataset.
Three views are used to test the proposed similarity graph fusion (SGF)
algorithm. The first row corresponds to the three single-view similarity
matrices and the fused similarity matrix (i.e., the fused graph). The second
row corresponds to the clustering results by performing spectral clustering on
the single-view graphs and the fused graph, respectively.

this objective function, the multi-view graph decomposition
and the multi-view graph fusion are simultaneously achieved.
With the fused graph obtained, some conventional graph-based
methods like spectral clustering can be performed to obtain the
final multi-view clustering result.

For clarity, we provide a visual example for our multi-view
graph learning model in Figure 1. As shown in the first row of
Figure 1, the three similarity matrices from three views appear
to be corrupted to different extents, and our proposed similarity
graph fusion (SGF) method is able to effectively remove many
of these corruptions (or inconsistency) while yielding a unified
and better graph with their consistent parts fused. As shown
in the second row of Figure 1, by graph fusion with both
consistency and inconsistency considered, the final clustering
(in the fourth column) on the fused graph is significantly better
than the clusterings on the original graphs.

The main contributions of this work are summarized below.
‚ We propose a new multi-view graph learning approach,

which for the first time, to the best of our knowledge,
simultaneously and explicitly models multi-view consis-
tency and inconsistency in a unified objective function.

‚ To optimize this objective function, we present an ef-
ficient alternating minimization scheme to achieve an
approximate solution.

‚ A novel multi-view clustering framework based on multi-
view graph learning is presented, which is further ex-
tended into two graph fusion variants, namely, distance
(dissimilarity) graph fusion and similarity graph fusion.

The rest of this paper is organized as follows. In Section II,
we describe the proposed multi-view graph learning model.
In Section III, we present an efficient algorithm to solve
the optimization problem. In Section IV, two graph fusion
versions for multi-view spectral clustering are proposed based
on the framework. Finally, we report the experimental results
in Section V and conclude this paper in Section VI.

II. LEARNING A CONSISTENT GRAPH WITH
INCONSISTENCY CONSIDERED

In this section, we propose a new multi-view graph learning
method which is capable of simultaneously and explicitly
modeling multi-view consistency and inconsistency in a uni-
fied optimization framework.

Let Wpiq P Rnˆn
ě0 denote the similarity matrix for the i-th

view, with n being the number of instances (data points). The
similarity matrices for different views may be significantly
different even when they yield similar clustering results. For
example, this is the case when the similarity matrix for i-th
view is a multiple of the similarity matrix for j-th view, i.e.,
Wpiq “ a ¨Wpjq. Let Lpiq,Lpjq be their (normalized) Lapla-
cian matrices respectively. For all k P r1, ns, the eigenvectors
corresponding to the k-th largest eigenvalue of Lpiq and Lpjq

are parallel. Thus they will give exactly the same clusters in
normalized cut [2]. Therefore, we need to scale the similarity
matrices before combining them into one common similarity
matrix, i.e., multiply Wpiq by a scaling coefficient αi. To make
the scaling result unique, we restrict the sum of the coefficients
to 1, i.e., αJ ¨ 1 “ 1 in matrix form. All the scaled similarity
matrices should be close to the common similarity matrix S.
Hence we want to minimize the following objective function
with the constraints:

min
α,S

v
ÿ

i“1

}αiW
piq ´ S}2F (1)

s.t. αJ1 “ 1, α ě 0,S ě 0.

Here, v is the number of views.
To simultaneously model multi-view consistency and multi-

view inconsistency, we decompose the similarity matrix Wpiq

for the i-th view into two parts: the consistent part Apiq and
the inconsistent part Epiq. More formally, we assume that

Wpiq “ Apiq `Epiq (2)

with Apiq,Epiq P Rnˆn
ě0 . The key question here is how to find

the matrices Apiq and Epiq.
Some previous studies [10], [11] have modeled a similar

decomposition, but they mainly focus on modeling the noise
in the data. In contrast, this paper focuses on the concept of
inconsistency. Although the noise is generally considered to
be sparse on a similarity graph [10], [11], the inconsistency is
no longer required to be.

The inconsistency can be seen as a much broader concept
than noise. It may be caused by not just noise (or corruptions),
but also different kinds of view-specific characteristics. Due to
the diversity of different views, the inconsistency can appear
everywhere on the similarity graphs. Thereby, the sparsity
within a similarity matrix is no longer a necessary (or suitable)
assumption in detecting the inconsistency on the multi-view
similarity graphs. When decomposing a similarity matrix Wpiq

into Apiq and Epiq, the inconsistent part Epiq is not necessary
to be a sparse matrix. Instead, we argue that a more reasonable
assumption is that the inconsistency should be sparse across
views, i.e., the inconsistent parts from different views should



have little in common with each other. It is intuitive that
the inconsistent parts are supposed to be inconsistent with
each other, otherwise it would contradict the definition of
inconsistency. To ensure that the inconsistency is sparse across
views, we should make the sum of the products of the
inconsistent parts to be small, that is

γ
V
ÿ

i,j“1
i‰j

sum
´

pαiE
piqq ˝ pαjE

pjqq

¯

, (3)

where ˝ denotes the element-wise multiplication of two ma-
trices, and sump¨q the operator of summing all elements in a
matrix, and γ is a parameter. We scale the inconsistent part of
each similarity matrices to address the aforementioned scale
problem. In addition, we typically do not want the inconsistent
parts to be too large, which is

β
V
ÿ

i“1

sum
´

pαiE
piqq ˝ pαiE

piqq

¯

, (4)

with β being a parameter.
To simultaneously model multi-view consistency and in-

consistency in a unified optimization framework, we combine
Eq. (1) (3) (4) into an overall objective function. Using the fact
that sum

`

pαiE
piqq ˝ pαjE

pjqq
˘

“ αiαj Tr
`

Epiq ¨ pEpjqqJ
˘

,
where Trp¨q denotes the matrix trace operator, we have the
final optimization problem

min
α,S,

Ap1q,...,Apvq

v
ÿ

i“1

›

›

›
αiA

piq ´ S
›

›

›

2

F
` (5)

v
ÿ

i,j“1

bijαiαj Tr
´

pWpiq ´Apiqq ¨ pWpjq ´ApjqqJ
¯

s.t. αJ1 “ 1,α ě 0,S ě 0,

Wpiq ě Apiq ě 0, i “ 1, . . . , v,

where B is a v-by-v matrix with diagonal elements and non-
diagonal elements being β and γ respectively. We do not
require S to be symmetric, because we can set S “ pS`SJq{2
to make it symmetric after solving the optimization problem,
just like we make the similarity matrix of k-nearest neighbor
graph symmetric by setting W “ pW `WJq{2.

Why this objective can detect multi-view inconsistency? In
ideal case, if all similarity matrices are consistent, the optimal
value of the objective Eq. (1) would be 0. However, due to
the inconsistency across views, it will not be 0. The higher the
inconsistency, the larger the objective value. If the inconsistent
parts are moved from the original similarity matrix Wpiq to the
matrix Epiq, the first term Eq. (1) can be reduced to a smaller
number, and the third term Eq. (4) will not increase much,
as we can set β to be a small number; so does the second
term Eq. (3), because inconsistency is sparse across views.
Hence, the overall objective value will decrease. Therefore,
the optimization process is actually shifting the inconsistent
parts from the original similarity matrix Wpiq to the matrix
Epiq by minimizing the overall objective function. This idea

is the core principle of how we simultaneously model multi-
view consistency and multi-view inconsistency in a unified
optimization framework.

III. OPTIMIZATION

It can be proved that the constraint S ě 0 in Problem (5)
can be removed while the global minimizer(s) remains the
same, but the proof is omitted here due to the limitation
of space. As the objective function is not jointly convex on
all variables, we use the alternating minimization scheme to
optimize it, i.e., we first optimize the objective function over
α,S with Ap1q, . . . ,Apvq fixed, and then optimize it over
Ap1q, . . . ,Apvq with α,S fixed, and repeat these two steps
until the objective value converges. Specifically, we develop
an efficient algorithm based on projection to solve these two
sub-problems. Its outline is: 1) ignore the constraints and solve
the unconstrained problem; 2) project the solution obtained in
step 1 to the feasible region G (see below for the details).

1) Fix Ap1q, . . . ,Apvq, update α and S: With Apiq fixed
and the inequality constraints removed (we keep the equation
constraint αJ1 “ 1, since it is easy to solve), we have the
following problem

min
α,S

v
ÿ

i“1

›

›

›
αiA

piq ´ S
›

›

›

2

F
(6)

`

v
ÿ

i,j“1

bijαiαj Tr
´

pWpiq ´Apiqq ¨ pWpjq ´ApjqqJ
¯

,

s.t. αJ1 “ 1. (7)

Its Lagrangian function is

L pα,S, µq “
v
ÿ

i“1

›

›

›
αiA

piq ´ S
›

›

›

2

F

`

v
ÿ

i,j“1

bijαiαj Tr
´

pWpiq ´Apiqq ¨ pWpjq ´ApjqqJ
¯

` µpαJ1´ 1q,

(8)

where µ is the Lagrange multiplier. The first order necessary
conditions for optimality are

BL
Bαi

“ ´2Tr
´

ApiqSJ
¯

` 2αi Tr
´

ApiqpApiqqJ
¯

`

2
v
ÿ

j“1

bijαj Tr
´

pWpiq ´Apiqq ¨ pWpjq ´ApjqqJ
¯

` µ “ 0,

i “ 1, . . . , v, (9)

BL
BS

“ 2vS´ 2
v
ÿ

i“1

αiA
piq “ 0, (10)

αJ1 “ 1. (11)

From Eq. (10) we have

S “
1

v

v
ÿ

i“1

αiA
piq (12)



Substitute Eq. (12) into Eq. (9). We have

2
v
ÿ

j“1

αj

ˆ

´
1

v
TrpApiqpApjqqJq

˙

`

2
v
ÿ

j“1

αjbij Tr
´

pWpiq ´Apiqq ¨ pWpjq ´ApjqqJ
¯

`

2αi TrpA
piqpApiqqJq ` µ “ 0, i “ 1, . . . , v. (13)

Let fij “ bij ¨ TrppW
piq ´ Apiqq ¨ pWpjq ´ ApjqqJq, gij “

TrpApiqpApjqqJq, and let G “ pgijqvˆv ,F “ pfijqvˆv . Then
Eq. (13) becomes

2ppei ´
1

v
1q ˝ gi ` fiq

Jα` µ “ 0, i “ 1, . . . , v, (14)

which can be written in matrix form

2ppI´
1

v
1q ˝G` Fq ¨α` µ1 “ 0, (15)

where 1 is a v-by-1 vector with all components equal to 1, and
ei is a v-by-1 vector with all components equal to 0, except
the i-th, which is 1. I P Rvˆv is a v-by-v identity matrix,
and 1 is a v-by-v matrix with all elements equal 1. Combine
Eq. (7) and Eq. (15), and let

H “ 2ppI´
1

v
1q ˝G` Fq,

we have the following system of linear equations of rα, µsJ:
„

H 1
1J 0



¨

„

α
µ



“

„

0
1



. (16)

We can obtain the solution α using basic linear algebra, and
then project it onto the feasible region G0 “ tα ě 0 : αJ1 “
1u by solving the following problem.

min
α

}α´ α̃}22 (17)

s.t. α ě 0,αJ1 “ 1. (18)

This is a projection problem on the probability simplex, which
can be solved by [12].

2) Fix α and S, update Ap1q, . . . ,Apvq: With α and S
fixed and constraints removed, we have the following problem

min
Ap1q,...,Apvq

v
ÿ

i“1

›

›

›
αiA

piq ´ S
›

›

›

2

F
`

v
ÿ

i,j“1

bijαiαj Tr
´

pWpiq ´Apiqq ¨ pWpjq ´ApjqqJ
¯

. (19)

Set the derivative of Eq. (19) to 0 and rearrange it, we have

α2
iA

piq `

v
ÿ

j“1

bijαiαjA
pjq “ αiS`

v
ÿ

j“1

bijαiαjW
pjq,

i “ 1, . . . , v, (20)

which are v matrix equations. Taking a closer look at them,
we find that they can be transformed into n2 systems of linear
equations of rap1qij , . . . , a

pvq
ij s

J with the same coefficient matrix:

C “ pB` Iq ˝ pααJq (21)

Denote αiS `
řv

j“1 bijαiαjW
pjq by Hpiq, and let hpiq “

vecpHpiqq, where vecp¨q is the vectorization operator. The
systems of linear equations are described by

C ¨

»

—

–

vecpAp1qq
...

vecpApvqq

fi

ffi

fl

“

»

—

–

hp1q

...
hpvq

fi

ffi

fl

(22)

Its solution is given by
»

—

–

vecpAp1q

...
vecpApvqq

fi

ffi

fl

“ C` ¨

»

—

–

hp1q

...
hpiq

fi

ffi

fl

, (23)

where C` denotes the pseudo-inverse of C. After getting
vecpApiqq, we can obtain Apiq by reshaping vecpApiqq into a
matrix. To project Apiq onto the feasible region Gi “ tA

piq :
Wpiq ě Apiq ě 0u, we simply set

Apiq “ maxpApiq, 0q,Apiq “ minpApiq,Wpiqq, (24)

where maxpq and minpq are applied element-wise.
For clarity, the overall algorithm of consistent graph learning

is summarized in Algorithm 1.

Algorithm 1 Consistent Graph Learning

Input: Adjacency matrices tWp1q, . . . ,Wpvqu, parameters β
and γ, max iteration m

Output: Adjacency matrix of the consistent graph S
1: Initialize Apiq: Apiq ÐWpiq, i “ 1, . . . , v
2: while not converge do
3: Obtain α̃ by solving Eq. (16)
4: Project α̃ onto the feasible region using Alg. [12]
5: Update S using Eq. (12)
6: Obtain vecpApiqq by Eq. (23)
7: Reshape vecpApiqq into a matrix Apiq

8: Project Apiq onto the feasible region using Eq. (24)
9: if reach max iteration then

10: break
11: end if
12: end while

IV. TWO GRAPH FUSION VERSIONS

By applying our multi-view graph learning model to simi-
larity graphs and distance (dissimilarity) graphs, respectively,
we further propose two specific algorithms, namely, similarity
graph fusion (SGF) and distance graph fusion (DGF).

In SGF, we use v similarity graphs as input for Algorithm 1.
For each view, the (Euclidean) distance is first transformed to
similarity by Gaussian kernel, and a k-nearest neighbor (kNN)
similarity graph is then built. Slightly different from the classic
kNN graph, we will keep the edge between two points xi and
xj as long as xi is among the kNNs of xj in any view. With
the v similarity graphs fused into a consistent similarity graph,
spectral clustering is then used to obtain the final clustering.

In DGF, we use v distance graphs as input. For each view,
we first build a kNN distance graph by the (Euclidean) dis-
tance. The distance graphs are fused into a unified dissimilarity



TABLE I
STATISTICS OF THE REAL-WORLD DATASETS

dataset # of instances # of views # of clusters

UCI Digits 2000 6 10
NUS-WIDE 2000 5 31

MSRCv1 210 5 7
Flower17 1360 7 17

Caltech101-7 1474 6 7
Caltech101-20 2386 6 20

BBCSport 544 2 5
Reuters 1500 5 6

graph by Algorithm 1. Then, the unified dissimilarity graph is
transformed into a similarity graph by Gaussian kernel, upon
which spectral clustering is used to obtain the final result.

V. EXPERIMENT

In this section, we compare the two proposed graph learn-
ing based multi-view clustering algorithms, namely, SGF
and DGF, against seven state-of-the-art multi-view spectral
clustering algorithms, namely, co-regularized spectral clus-
tering (CoRegSC) [13], robust multi-view spectral cluster-
ing (RMSC) [11], affinity aggregation for spectral clustering
(AASC) [14], weighted multi-view spectral clustering based
on spectral perturbation (WMSC) [15], multiview clustering
via adaptively weighted procrustes (AWP) [16], graph learning
for multiview clustering (GLMC) [6], and multiview consen-
sus graph clustering (MCGC) [8]. Besides these multi-view
algorithms, the classic spectral clustering (SC) [2] is also
performed on each view of the datasets, and the best single-
view performance by SC is reported for reference only.

A. Datasets and Evaluation Metric

We conduct experiments on eight real-world multi-view
datasets, namely, UCI Handwritten Digits [17], NUS-WIDE
[18], MSRCv1 [19], Flower17 [20], Caltech101-7 [21], and
Caltech101-20 [21] for images clustering, Reuters [17], and
BBCSport [22] for news article clustering. Due to the large
size of the original NUS-WIDE and Reuters datasets, we
randomly sample two subsets from them in our experiments.
The details of the datasets are given in Table I.

In the experiments, we use the normalized mutual informa-
tion (NMI) [21] as the evaluation metric.

B. Experiments Setup

For each algorithm, the grid search is used to search the
parameter(s) from 10´6 to 106 on logarithmic scale and its
performance with the best parameter(s) is reported. We run
all the algorithms 20 times, and report their average scores
and standard deviations.

In our DGF method, we use Euclidean distance for all
datasets except the two text datasets, i.e., the BBCSport and
Reuters datasets, where the cosine distance is used.

Similarly, in SGF, we use the cosine similarity to build
similarity matrices for the BBCSport and Reuters datasets and
use Gaussian kernels for other datasets.
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Fig. 2. Convergence curves of the proposed algorithm on the eight datasets.
The Y-axis are the objective value, and the X-axis are number of iterations.

C. Results and Analysis

We report the clustering performances of different multi-
view clustering methods in Table II. As can be seen in Table II,
the two proposed graph learning methods, i.e., SGF and DGF,
achieve better performances than the state-of-the-art methods
on most of the datasets, which demonstrate the robustness of
our algorithms. Note that AASC, GLMC, and MCGC are also
graph learning (or graph fusion) based methods, which typi-
cally focus on multi-view consistency yet cannot (explicitly)
incorporate the multi-view inconsistency in their models. The
experimental results in Table II have shown the advantages of
our algorithms over AASC, GLMC, and MCGC, probably
due to our simultaneous modeling of multi-view consistency
and multi-view inconsistency in our framework.

It is noteworthy that our distance (dissimilarity) graph fusion
version generally performs better than our similarity graph
fusion version. As previous graph learning methods mostly
exploit similarity graphs, this comparative study can serve as
an interesting start for researchers to consider the shift from
similarity graph learning to dissimilarity graph learning for
multi-view clustering.

D. Convergence Analysis

Because the original function is not jointly convex on all
variables, we may not obtain a global minimum. We propose
an alternating minimization scheme to solve the optimization
problem. Although the projection-based method does not
guarantee to converge, it is reliable and converges within a
few iterations in practice, as shown in Figure 2.

E. Parameters Sensitivity

We have two parameters β and γ in the proposed algorithm.
As showed in Figure 3, we test each parameter from 10´6 to
106 on log scale while fixing the value of the other parameter.
The results indicate that the performance of the proposed
algorithm is stable across a wide range of parameters. Note
that we typically do not need to tune these two parameters, as
we can obtain quite stable performance by simply setting β in
the range r10´6, 10´4s and γ in the range r104, 106s across
different datasets, as Figure 3 indicates.



TABLE II
AVERAGE PERFORMANCES (W.R.T. NMI (%)) OVER 20 RUNS BY DIFFERENT ALGORITHMS. THE BEST TWO SCORES IN EACH COLUMN ARE IN BOLD.

Method Caltech101-7 MSRCv1 BBCSport Flower17 UCI Digits NUS-WIDE Reuters Caltech101-20

SC(best) 52.42˘0.97 62.46˘0.00 81.73˘0.00 46.94˘0.42 84.69˘0.04 17.27˘0.25 30.32˘0.04 54.36˘0.97

CoRegSC 48.21˘0.00 75.89˘0.15 93.15˘0.00 55.50˘0.13 93.65˘0.04 19.20˘0.27 36.93˘0.00 56.79˘1.06

RMSC 49.45˘0.14 73.97˘0.00 91.63˘3.38 55.57˘0.35 85.96˘1.10 19.10˘0.27 34.38˘0.00 59.88˘1.03

AASC 53.85˘0.07 75.12˘0.51 90.34˘0.00 57.98˘0.21 88.64˘0.03 19.58˘0.26 33.44˘0.00 61.35˘0.48

MVGL 55.52˘0.00 70.86˘0.00 92.47˘0.00 45.50˘0.00 88.91˘0.00 10.32˘0.00 27.62˘0.00 59.07˘0.00

MCGC 51.26˘0.00 69.62˘0.00 91.42˘0.00 50.43˘0.64 94.22˘0.00 16.31˘0.53 30.10˘0.00 59.59˘0.00

AWP 48.59˘1.44 68.98˘4.32 89.84˘6.99 51.49˘1.20 88.65˘4.18 17.15˘0.42 30.61˘2.89 56.86˘1.75

WMSC 51.22˘0.00 75.34˘0.34 92.85˘0.00 57.93˘0.50 91.04˘0.04 19.04˘0.30 35.02˘0.70 57.48˘0.81

SGF 56.07˘0.06 76.92˘0.14 92.28˘0.00 64.83˘0.21 94.54˘0.00 19.61˘0.40 35.04˘0.03 61.58˘0.72

DGF 75.55˘5.02 81.29˘0.00 94.05˘0.00 58.13˘0.53 96.22˘0.00 19.93˘0.28 39.52˘0.80 65.36˘0.92
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Fig. 3. NMI against parameters β and γ on each dataset.

VI. CONCLUSIONS

This paper presents a new graph learning-based multi-view
clustering approach, which simultaneously and explicitly for-
mulates multi-view consistency and multi-view inconsistency
in a unified optimization model. To solve this model, we
present an efficient optimization algorithm which combines
alternating minimization scheme with projection method to ob-
tain an approximate solution. Further, the proposed approach
is extended to two graph fusion versions, corresponding to dis-
tance (dissimilarity) graph fusion and similarity graph fusion,
respectively. Experimental results have shown the superiority
of our approach against several state-of-the-art multi-view
spectral clustering approaches on eight multi-view datasets.

It is noteworthy that our distance graph fusion version
generally performs better than our similarity graph fusion
version on the benchmark datasets. A probable reason for this
finding is that the fusion of distance matrices (before the kernel
function) may better preserve the structure information than
the fusion of similarity matrices (after the kernel function),
as the kernel function can bring some bias into the graph
when mapping the distance into a similarity. Based on the
theoretical and empirical evidence of this paper, it would be an
interesting direction to conduct more in-depth investigation on
the consistency VS inconsistency issue as well as the similarity
fusion VS dissimilarity fusion issue in the future multi-view
graph learning research.
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