Consistency Meets Inconsistency: A Unified Graph Learning Framework for Multi-view Clustering

Youwei Liang¹, Dong Huang¹, Chang-Dong Wang² ¹South China Agricultural University, Guangzhou, China ²Sun Yat-sen University, Guangzhou, China

Introduction

Spectral clustering

- Traditional way: Pre-define an affinity graph -> Partition it.
- Its performance heavily relies on the pre-defined graph!

- **Graph learning:** Can we adaptively learn the graph?
 - (Single-view) graph learning (Nie et al. KDD 2015; Nie et al. AAAI 2016)
 - Multi-view graph learning (Zhan et al. TKDE 2018; Nie et al. IJCAI 2017)

Multi-view Graph Learning (Graph Fusion)

- Zhan et al. (TKDE 2018; TIP 2019) fused multiple graphs into a consistent graph with a certain number of connected components.
- Nie et al. (IJCAI 2017) proposed a self-weighted scheme to fuse multiple graphs with the importance of each view considered.

These methods focus on multi-view consistency, yet cannot simultaneously and explicitly consider both multi-view consistency and inconsistency.

The inconsistency is a much broader concept than noise. It may be caused by not just noise/corruptions, but also different kinds of view-specific characteristics.

Consistency & Inconsistency

• In this paper, we propose a new multi-view graph learning approach for multi-view clustering.

• We argue that the simultaneous modeling of **multi-view consistency** and **multi-view inconsistency** can significantly benefit the multi-view graph learning process.

Decomposition & Fusion

• It is assumed that the graph of each view can be decomposed into two parts, i.e., the consistent part and the inconsistent part.

- Given graphs of multiple views, our goal is **to learn and remove the inconsistent parts while preserving and fusing the consistent parts**.
 - \checkmark The graphs can be similarity graphs or distance (dissimilarity) graph.

Illustration

6

Objective Function

□ A naïve objective function:

$$\min_{\boldsymbol{\alpha}, \mathbf{S}} \quad \sum_{i=1}^{v} \|\alpha_i \mathbf{W}^{(i)} - \mathbf{S}\|_F^2$$

s.t. $\boldsymbol{\alpha}^\top \mathbf{1} = 1, \alpha \ge 0, \mathbf{S} \ge 0.$

We decompose the adjacent matrix W⁽ⁱ⁾ for the i-th view into two matrices A⁽ⁱ⁾ and E⁽ⁱ⁾

Some Other Terms

1. Let the sum of the products of the inconsistent parts be small:

$$\gamma \sum_{\substack{i,j=1\\i\neq j}}^{V} \operatorname{sum}\left((\alpha_{i}\mathbf{E}^{(i)}) \circ (\alpha_{j}\mathbf{E}^{(j)})\right)$$

Element-wise multiplication
 $(\alpha_{i}\mathbf{E}^{(i)}) \circ (\alpha_{j}\mathbf{E}^{(j)})$
Simply speaking, the inconsistent parts from different views should have little in common!

2. Additionally, we do not want the inconsistent parts to be too large:

$$\beta \sum_{i=1}^{V} \operatorname{sum}\left((\alpha_i \mathbf{E}^{(i)}) \circ (\alpha_i \mathbf{E}^{(i)}) \right)$$

Objective Function

Considering that

sum
$$\left((\alpha_i \mathbf{E}^{(i)}) \circ (\alpha_j \mathbf{E}^{(j)}) \right) = \alpha_i \alpha_j \operatorname{Tr} \left(\mathbf{E}^{(i)} \cdot (\mathbf{E}^{(j)})^{\top} \right)$$

We have the unified objective function:

Optimization

□ As the objective function is not jointly convex on all variables, we use an alternating minimization scheme to optimize it.

Alternate between:

- Fix $\mathbf{A}^{(1)},\ldots,\mathbf{A}^{(v)}$, update lpha and \mathbf{S}
- Fix $\boldsymbol{\alpha}$ and $\boldsymbol{\mathsf{S}}$, update $\boldsymbol{\mathsf{A}}^{(1)},\ldots,\boldsymbol{\mathsf{A}}^{(v)}$

until convergence.

Specifically, we develop an efficient algorithm based on projection to solve these two sub-problems.

✓ Basic idea:

- Solve the sub-problems with no constraints
- Project the solutions into feasible region so that they meet the constraints

Overall Algorithm

Algorithm 1 Consistent Graph Learning

Input: Adjacency matrices $\{\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(v)}\}$, parameters β and γ , max iteration m

Output: Adjacency matrix of the consistent graph ${f S}$

- 1: Initialize $\mathbf{A}^{(i)}$: $\mathbf{A}^{(i)} \leftarrow \mathbf{W}^{(i)}, \quad i = 1, \dots, v$
- 2: while not converge do
- 3: Obtain $\tilde{\alpha}$ by solving Eq. (16)
- 4: Project $\tilde{\alpha}$ onto the feasible region using Alg. [12]
- 5: Update S using Eq. (12)
- 6: Obtain $vec(\mathbf{A}^{(i)})$ by Eq. (23)
- 7: Reshape $vec(\mathbf{A}^{(i)})$ into a matrix $\mathbf{A}^{(i)}$
- 8: Project $A^{(i)}$ onto the feasible region using Eq. (24)
- 9: **if** reach max iteration **then**
- 10: break
- 11: **end if**
- 12: end while

Two Graph Fusion-based Variants: SGF & DGF

 Notice that our multi-view graph learning technique is applicable to both similarity graphs and dissimilarity graphs.

□ It leads to two graph fusion-based variants:

- Similarity graph fusion (SGF)
- Distance (dissimilarity) graph fusion (DGF)

Experiments: Datasets

TABLE I STATISTICS OF THE REAL-WORLD DATASETS

dataset	# of instances	# of views	# of clusters	
UCI Digits	2000	6	10	
NUS-WIDE	2000	5	31	
MSRCv1	210	5	7	
Flower17	1360	7	17	
Caltech101-7	1474	6	7	
Caltech101-20	2386	6	20	
BBCSport	544	2	5	
Reuters	1500	5	6	

Experiments: Convergence Analysis

(e) MSRCv1 (f) Caltech101-20 (g) NUS-WIDE

12

(h) Reuters

Fig. 2. Convergence curves of the proposed algorithm on the eight datasets. The Y-axis are the objective value, and the X-axis are number of iterations.

10

14

Experiments: Parameter Analysis

Experiments: Comparison

TABLE II

AVERAGE PERFORMANCES (W.R.T. NMI (%)) OVER 20 RUNS BY DIFFERENT ALGORITHMS. THE BEST TWO SCORES IN EACH COLUMN ARE IN BOLD.

Method	Caltech101-7	MSRCv1	BBCSport	Flower17	UCI Digits	NUS-WIDE	Reuters	Caltech101-20
SC(best)	52.42 ± 0.97	$62.46_{\pm 0.00}$	$81.73_{\pm 0.00}$	$46.94_{\pm 0.42}$	$84.69_{\pm 0.04}$	$17.27_{\pm 0.25}$	30.32 ± 0.04	$54.36_{\pm 0.97}$
CoRegSC	48.21 ± 0.00	75.89 ± 0.15	93.15 $_{\pm 0.00}^{-}$	55.50 ± 0.13	$93.65_{\pm 0.04}$	19.20 ± 0.27	$36.93_{\pm 0.00}$	$56.79_{\pm 1.06}^{-}$
RMSC	49.45 ± 0.14	73.97 ± 0.00	91.63 ± 3.38	55.57 ± 0.35	85.96 ± 1.10	19.10 ± 0.27	34.38 ± 0.00	59.88 ± 1.03
AASC	53.85 ± 0.07	75.12 ± 0.51	90.34 ± 0.00	57.98 ± 0.21	88.64 ± 0.03	19.58 ± 0.26	33.44 ± 0.00	61.35 ± 0.48
MVGL	55.52 ± 0.00	70.86 ± 0.00	92.47 ± 0.00	45.50 ± 0.00	88.91 ± 0.00	10.32 ± 0.00	27.62 ± 0.00	$59.07_{\pm 0.00}$
MCGC	51.26 ± 0.00	69.62 ± 0.00	91.42 ± 0.00	50.43 ± 0.64	94.22 ± 0.00	16.31 <u>+</u> 0.53	30.10 ± 0.00	$59.59_{\pm 0.00}$
AWP	48.59 ± 1.44	68.98 ± 4.32	89.84 ± 6.99	51.49 ± 1.20	88.65 ± 4.18	17.15 ± 0.42	30.61 ± 2.89	56.86 ± 1.75
WMSC	51.22 ± 0.00	75.34 ± 0.34	92.85 ± 0.00	57.93 ± 0.50	91.04 ± 0.04	19.04 ± 0.30	35.02 ± 0.70	57.48 ± 0.81
SGF DGF	$\frac{56.07_{\pm 0.06}}{75.55_{\pm 5.02}}$	$76.92_{\pm 0.14}$ 81.29 $_{\pm 0.00}$	$92.28_{\pm 0.00}$ $94.05_{\pm 0.00}$	$\begin{array}{c} \textbf{64.83}_{\pm 0.21} \\ \textbf{58.13}_{\pm 0.53} \end{array}$	$94.54_{\pm 0.00}$ 96.22 $_{\pm 0.00}$	$\frac{19.61_{\pm 0.40}}{19.93_{\pm 0.28}}$	$35.04_{\pm 0.03}$ 39.52 _{\pm 0.80}	$\begin{array}{c} \textbf{61.58}_{\pm 0.72} \\ \textbf{65.36}_{\pm 0.92} \end{array}$

Two basic observations:

- 1. The two proposed methods show very competitive results.
- 2. DGF generally outperforms SGF!!!

Summarization

- □ We for the first time, to our knowledge, simultaneously and explicitly model multi-view consistency and inconsistency in a unified objective function.
- □ To optimize this objective function, we present an efficient alternating minimization scheme to obtain an approximate solution.
- □ A multi-view clustering framework based on multi-view graph learning is presented, with two graph fusion variants, i.e., SGF and DGF.
- **Source Code:** <u>https://github.com/youweiliang/ConsistentGraphLearning</u>

Two Interesting Issues in the Future Work

Consistency VS Inconsistency

Similarity Fusion VS Dissimilarity Fusion