Large Norms of CNN Layers Do Not Hurt Adversarial Robustness

This work discusses the connections of

* adversarial robustness of neural nets, and
* their Lipschitz constants, and

* the norms of convolutional layers.
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Adversarially robust
classifiers are provably
realizable using neural nets.

Assumption 2 (2-epsilon separable). The data points
of any two diﬁé:em classes are 2-epsilon separable:
inf{d(x@, 2): 20 € X 200 € XU i j} > 2¢

Theorem 2 (Realizability of robust classifiers). Let p: R —
R be any non-affine continuous function which is continu-
ously differentiable ar at least one point, with nonzero deriva-
tive at that point. If Assumption 2 holds, then there exists
a feedforward neural network with p being the activation
function that has robust accuracy 1.

Our theories and experiments refute the
argument that large norms of neural net
layers are bad for adversarial robustness.

Robust classifiers need not have small Lipschitz
constants.

Proposition 1. There exists a feedforward network with
ReLU activation where the norms of all layers can be ar-
bitrarily large while the Lipschitz constant of the network is
0.

Proposition 2. Let p: R — R be any non-affine continuous

Robust classifiers need not have small layer

norms.
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We provide a theorem to compute and
regularize (with a norm-decay algorithm)
the layer norms of CNNs.

Theorem 1. Suppose Assumption 1 holds. Then the {1 norm
and £ .. norm and an upper bound of the {5 norm of conv are
given by
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Algorithm 1 Norm Decay

Input: loss function £ (assuming it is to be minimized),
parameters #, momentum -, regularization parameter /3

Output: parameters

I: h + O (initialize the gradient of norms of layers)

2: repeat

3: g Vol

4 Compute p, the gradient of ¢, or {5 norm of each

fully-connected and convolutional layer

5 he~-h+(1-%)-p

6: g+—g+B/N-h

7: # < SGD(6,q)

8: until convergence

Norm-regularization tends to hurt robust accuracy.
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