Large Norms of CNN Layers Do Not Hurt Adversarial Robustness

This work discusses the connections of

- adversarial robustness of neural nets, and
- their Lipschitz constants, and
- the **norms** of convolutional layers.

Adversarially robust classifiers are *provably* realizable using neural nets.

Assumption 2 (2-epsilon separable). The data points of any two different classes are 2-epsilon separable: $\inf\{d(x^{(i)}, x^{(j)}): x^{(i)} \in \mathcal{X}^{(i)}, x^{(j)} \in \mathcal{X}^{(j)}, i \neq j\} > 2\epsilon.$

Theorem 2 (Realizability of robust classifiers). Let $\rho \colon \mathbb{R} \to \mathbb{R}$ be any non-affine continuous function which is continuously differentiable at at least one point, with nonzero derivative at that point. If Assumption 2 holds, then there exists a feedforward neural network with ρ being the activation function that has robust accuracy 1.

Robust classifiers need not have small Lipschitz constants.

Proposition 1. *There exists a feedforward network with ReLU activation where the norms of all layers can be arbitrarily large while the Lipschitz constant of the network is 0.*

Proposition 2. Let $\rho: \mathbb{R} \to \mathbb{R}$ be any non-affine continuous function which is continuously differentiable at at least one point, with nonzero derivative at that point. If Assumption 2 holds, then for all $\xi > 0$, there exists a feedforward neural network with ρ being the activation function that achieves robust accuracy 1 and its Lipschitz constant is at least ξ .

Youwei Liang, Dong Huang SCAU

Our theories and experiments refute the argument that large norms of neural net layers are bad for adversarial robustness.

We provide a theorem to compute and regularize (with a norm-decay algorithm) the layer norms of CNNs.

Theorem 1. Suppose Assumption 1 holds. Then the ℓ_1 norm and ℓ_{∞} norm and an upper bound of the ℓ_2 norm of conv are given by

$$\|\operatorname{conv}\|_{1} = \max_{1 \le j \le d_{in}} \max_{\mathcal{A} \in \mathcal{S}} \sum_{(k,t) \in \mathcal{A}} \sum_{i=1}^{d_{out}} |K_{i,j,k,t}|, \qquad (1)$$

$$\|\operatorname{conv}\|_{\infty} = \max_{1 \le i \le d_{out}} \sum_{j=1}^{m} \sum_{k=1}^{j} \sum_{t=1}^{j} |K_{i,j,k,t}|,$$
(2)

Algorithm 1 Norm Decay

Input: loss function \mathcal{L} (assuming it is to be minimized),								
parameters θ , momentum γ , regularization parameter β								
Dutput: parameters θ								
1: $h \leftarrow 0$ (initialize the gradient of norms of layers)								
2: repeat								
3: $g \leftarrow \nabla_{\theta} \mathcal{L}$								
4: Compute p, the gradient of ℓ_1 or ℓ_{∞} norm of each								
fully-connected and convolutional layer								
5: $h \leftarrow \gamma \cdot h + (1 - \gamma) \cdot p$								
6: $q \leftarrow q + \beta/N \cdot h$								
7: $\theta \leftarrow \operatorname{SGD}(\theta, g)$								
8: until convergence								

Norm-regularization tends to hurt robust accuracy.

	plain		weight decay		sii	ℓ_1 norm decay				ℓ_∞ norm decay						
model	ACC	- 10 ⁻²	10^{-3}	10^{-4}	$10^{-5} \mid 0.5$	1.0	1.5	2.0	$ 10^{-2}$	10^{-3}	10^{-4}	10^{-5}	$ 10^{-2}$	10^{-3}	10^{-4}	10^{-5}
vgg	Clean Robust	90.491.660.256.3	91.7 60.5	90.1 60.6	90.2 87.6 60.3 48.8	89.1 52.2	90.0 54.1	89.9 56.7	88.1 56.5	91.1 62.5	90.6 61.1	90.8 60.1	91.8 56.9	91.1 60.0	90.8 60.8	90.6 60.1
resnet	Clean Robust	93.294.337.028.2	94.1 33.7	93.1 33.9	92.7 93.6 40.9 35.2	94.0 41.7	94.2 43.2	93.8 39.8	92.5 24.5	93.4 37.7	93.5 38.3	93.4 37.5	93.0 20.0	93.8 34.7	93.1 38.9	93.0 37.6
senet	Clean Robust	93.1 94.2 35.7 23.5	93.9 32.8	93.0 37.0	92.4 93.8 34.8 30.5	94.2 35.6	93.8 35.2	94.2 37.4	92.3 33.6	93.8 36.0	93.3 38.2	93.3 36.7	93.0 28.6	93.6 31.0	92.8 37.6	93.2 37.4
regnet	Clean Robust	91.8 93.6 34.8 23.7	94.4 30.3	92.3 30.0	91.3 93.9 31.0 27.7	93.4 28.8	93.0 29.0	92.4 28.8	93.7 29.2	92.3 31.1	91.6 28.1	91.9 34.3	93.4 23.2	92.0 27.7	91.8 27.9	91.9 30.6

